- 14. N. L. Kareta, V. T. Mazur, and V. N. Sladkova, in: Machines and Instruments for Materials Testing [in Russian], Metallurgiya, Moscow (1971).
- 15. M. E. Anufriev, "Visual level indicator," Kholod. Tekh., No.1 (1970).
- 16. A. R. Dorokhov, A. A. Kiriyanenko, and A. N. Solov'ev, "Investigation of the surface tension of Freens," Kholod. Tekh., No.1 (1969).

COMPRESSIBILITY OF A BINARY MIXTURE OF ARGON AND NITROGEN AT DIFFERENT CONCENTRATIONS IN THE 59-590 BAR PRESSURE RANGE

N. D. Kosov and I. S. Brovanov

The compressibility of an argon-nitrogen mixture is measured by a variable volume piezometer. It is shown that the constant in the formula for the binary mixture compressibility depends on the pressure.

The investigation of the compressibility of gas mixtures, which is of great practical value, is associated with the problem of obtaining sufficiently exact and confident semiempirical equations of state. As is known [1], a measure of the cohesive force in the equations of state of a real gas with two parameters which were applied to mixtures is the constant a, which is related to analogous constants for pure gases a_1 and a_2 , as well as the constant a_{12} characterizing the collisions between diverse molecules, by the relationship

$$a_{\rm M} = a_{\rm I} x_1^2 + a_2 x_2^2 + 2a_{\rm I2} x_{\rm I} x_2. \tag{1}$$

Krichevskii and Kazarnovskii [2] proposed an equation of state for binary mixtures which agrees outwardly with (1):

$$Z(T, V) = x_1^2 Z_1(T, V) + x_2^2 Z_2(T, V) + 2x_1 x_2 Z_{12}(T, V),$$
⁽²⁾

in which Z_{12} is independent of the composition ([3] is devoted to an analysis of this equation).

It is interesting to extend (2) to the compressibility of mixtures

$$Z_{\rm M} = x_1^2 Z_1 + x_2^2 Z_2 + 2x_1 x_2 Z_{12}, \tag{3}$$

but to consider the quantity Z_{12} as an empirical constant without relating it to some analytical dependence with virial coefficients.

This paper is devoted to the measurement of the compressibility of an argon-nitrogen mixture for different compositions, pressures, and temperatures and to the verification of the possibility of using the relationship (3) to describe mixture compressibility.

The compressibility was measured by a pressure-unloaded piezometer of variable volume with a mercury level search by a gamma radiometer. The mass was measured by directly weighing a definite batch of gas transferred in special stainless steel ampoules with microvalves.

The diagram of the apparatus is shown in Figure 1. The inner tube (D = 14, d = 12 mm) is fabricated from stainless steel and submerged in a thick-walled vessel 2 with mercury. The tube 3 (D = 22.2, d = 15.5 mm) welded to the vessel 2 carries the load under pressure. The thermostatic jacket 4 is heat-insulated by the foam plastic half-rings 5. The inlet for the platinum resistance thermometer 6 is arranged up against the tube 3 in the expanded part of the thermostatic jacket.

The system component to seek the mercury level is constructed as follows. The support slab 7 in the form of a disk is fastened to the outer thick-walled tube 4 of the piezometer at a given height by using bolts not

S. M. Kirov Kazakh State University. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 4, pp. 627-632, April, 1979. Original article submitted January 3, 1975.

UDC 533.21

P. bar	Nitrogen			Argon			
	our data	data from [5]	δ, %	our data	data from [5]	ð, %	
150 200 300 400 500 600	170,96 220,61 305,15 370,92 422,82 466,30	171,29 221,63 306,37 372,30 424,63 467,07	0,19 0,46 0,40 0,37 0,43 0,16	264,50 351,11 503,64 622,45 714,78 788,37	265,60 352,73 505,56 625,39 718,39 792,39	0,42 0,46 0,38 0,47 0,50 0,51	

TABLE 1. Comparison between the Densities $(kg \cdot m^{-3})$ of Nitrogen and Argon, Measured on the Described Apparatus, and Data in the Literature, $T = 290^{\circ}K$

Fig. 1. Diagram of the experimental setup.

indicated in Fig. 1. A container for the radioactive gamma-radiation source 9 and the radiometer sensor 10 is mounted on the mobile base 8. The mobile base can be displaced along the piezometer by two micrometer screws 11. The position of the moving slab is fixed by a slide gauge 12 with 0.1-mm scale divisions. The intensity of the gamma radiation incident on the radiometer sensor is regulated by the lead shield 13 with a slot of about 1 mm.

When the gamma rays overlap the mercury column, their intensity diminishes abruptly (drops to 20-30% of the initial value), as is noted on the radiometer scale. The true position of the mercury level is recorded by the beginning of the radiometer pointer motion. The accuracy of finding the height is no worse than ± 0.2 mm. The experience with using such an apparatus to seek the mercury level in the customary variable-volume piezometer [4] and with piezometer data exhibited good stability of its operation and high reproducibility of the measurement results.

The piezometer volume is determined by repeated filling with distilled water at 20°C, forcing it out by mercury, and weighing the displaced volume of water on analytical balances. The dependence of the piezometer volume on the position of the mercury level there was found by the method of least squares. The maximum height of the gas column in the piezometer was 1500 mm. A correction for the volume change with temperature was inserted for other temperatures.

The gas pressure was measured by a piston-loaded manometer MP-600 of the class 0.05 with corrections for the atmospheric pressure and column height of the mercury and oil in the piezometer taken into account.

p, bar	o. kg/m ³	z _M	P, bar	ρ.kg/m ³	^z M	
1.	x _{Ar} =83,90%		2. $x_{\rm Ar} = 62,98\%$			
2	Г=293,15 °К			<i>T</i> =293,15°K		
59,52 78,71 98.06	95,604 127,29 159,39	0,9712 0,9646 0,9597	59,45 78,66 98,02	88,798 118,11 147,52	0,9760 0,9708 0,9686	
117,88 147,52 176,68	192,26 240,79 287,74	0,9565 0,9557 0,9579	117,85 147,53 176,70	177,46 221,47 263,53	0,9681 0,9710 0,9774	
216,07 235,60 265,14 294,50 323,72 353,05	347,53 375,50 416,04 453,74 488,87 521,42	0,9699 0,9788 0,9942 1,0126 1,0331 1,0563	216,08 235,61 264,53 294,46 323,77 353,09 283,09	317,14 342,22 378,02 411,49 442,65 471,49	0,9932 1,0036 1,0201 1,0431 1,0662 1,0916	
382,39 411,74 441,09 470,46 499,83 530,30 558,58	551,68 579,67 605,97 629,81 652,95 674,60 694,51 712 64	1,0813 1,1081 1,1356 1,1653 1,1942 1,2263 1,2547	411,78 441,14 470,50 499,87 529,24 558,62 588,00	438,23 523,08 546,59 568,08 588,43 607,39 625,19 642,24	1,1475 1,1765 1,2073 1,2383 1,2701 1,3025 1,3346	
587,96 713,64 1,2853 $T=323,15^{\circ}K$			$T = 323.15^{\circ} \text{K}$			
147,71 176,78 206,06	212,44 252,94 292,38	0,9840 0,9891 0,9974	147,72 176,86 206,08	196,01 232,74 268,28	0,9965 1,0049 1,0158	
235,33 264,63 293,95 323,89 353,20	330,03 366,16 400,31 433,14 463,56	1,0091 1,0228 1,0392 1,0582 1,0783	235,34 264,64 293,97 323,92 353,23	302,26 334,35 365,00 394,24 421,43	1,0296 1,0467 1,0650 1,0865 1,1084	
382,52 411,86 441,21 499,93 558,67 588,04	492,38 519,43 545,08 591,57 633,35 652,34	1,0995 1,1222 1,1455 1,1960 1,2484 1,2757	382,56 411,90 441,25 470,60 499,97 529,33 558,70	447.22 471,31 493,73 515,30 532,00 554,63 572,50	1,1312 1,1557 1,1818 1,2077 1,2427 1,2620 1,2905	
	$T = 353.15^{\circ} K$		588,07	589,75	1,3186	
147,89	190,80	1,0038		T=353,15°	ĸ	
177,00 206,20 235,45 264,74 294,05 324,04 353,34 382,66 411,98 441,32 470,67 500,03 529,39 558,75 588,12	226,64 261,53 295,54 328,06 359,26 389,61 417,86 444,54 470,28 494,93 518,00 539,96 560,79 580,74 599,49	1,0114 1,0211 1,0317 1,0450 1,0600 1,0771 1,0950 1,1147 1,1345 1,1547 1,1767 1,1992 1,2225 1,2460 1,2705	177,01 206,21 235,46 264,75 294,06 324,08 353,37 382,69 412,02 441,36 470,70 500,06 529,42 558,78 588,15	209,06 240,78 271,51 300,79 328,96 355,92 381,26 405,40 428,29 450,16 470,80 490,40 509,07 526,75 543,58	1,0245 1,0363 1,0494 1,0650 1,0817 1,1018 1,1215 1,1422 1,1641 1,1864 1,2098 1,2339 1,2584 1,2836 1,3093	
3. 7	x _{Ar} =41,15% [*] =293,15.°K		4. $x_{Ar} = 19,25\%$ $T = 293,15^{\circ}K$			
59,28 78,53 97,92 117,77 147,51 176,69 216,08 226,43 235,61 264,54 294,36 323,68 353,01 389,29	81,709 108,55 135,38 162,45 201,65 238,98 286,54 298,45 308,54 339,65 369,75 396,85 422,48 446	0,9800 0,9773 0,9778 0,9793 0,9882 0,9987 1,0187 1,0249 1,0315 1,0521 1,0754 1,1018 1,1287 1,1287	59,27 78,52 97,91 118,42 147,48 176,67 216,06 236,18 265,21 294,49 323,80 353,18 382,46 411	74,538 98,801 122,87 147,83 182,31 215,42 257,39 277,32 304,56 330,37 354,13 376,34 397,02	0,9886 0,9881 0,9907 0,9960 1,0059 1,0197 1,0437 1,0589 1,0827 1,1083 1,1369 1,1667 1,1978	

TABLE 2. Density ρ and Compressibility Coefficient Z_M of an Argon-Nitrogen Mixture for Different Pressures, Concentrations, and Temperatures

TABLE 2. (continued)

P. bar	ρ. kg/m ³	^z M	P. b ar	ρ. kg/m ³	^z M
470,43	507,56	1,2520	499,90	466,63	1,3320
529 18	549 17	1 3185	029,27	401,01	1,0007
558,56	558 13	1.3519	588 03	450,00	1 4364
587.94	573.20	1.3856	000,00	000,33	1,1001
		-,			
Т	=323.15°K	· · ·	· .	$T = 323, 15.^{\circ} K$	
		[147,66	162,38	1,0256
206,07	243,77	1,0359	176,82	191,82	1,0397
235,34	273,94	1,0528	206,04	219,88	1,0569
264,64	302,58	1,0718	235,32	246,62	1,0762
323,82	355,27	1,1169	264,62	271,84	1,0980
353,13	379,47	1,1404	293,95	295,73	1,1211
382,4/	401,59	1,10/1	323,95	220 47	1,14/4
411,02	420,08	1,1920	380 58	350 48	1 9004
470 59	442,90	1 9489	411 19	378,19	1,2004
499.89	479,83	1.2767	441.27	395.65	1.2580
529.26	496.69	1,3058	470.63	412,10	1,2881
558,63	512.61	1.3354	499,94	427,79	1,3182
588,01	527,77	1,3653	529,36	442,43	1,3495
			558,73	456,47	1,3806
			588,10	469,99	1,4114
Т	=353,15°K			•	
147,86	161,53	1,0292	1	T=353,15°K	
176,99	191,04	1,0399	147.83	146.67	1.0403
206,20	219,46	1,0536	206.17	198.65	1.0712
235,45	240,88	1,0694	235,43	222,97	1,0898
204,74	273,04	1,0072	264,72	246,26	1,1095
393,95	322.06	1 1970	294,04	268,32	1,1310
353,26	344 42	1,1501	324,09	289,60	1,1550
382.58	365.89	1.1725	382,71	328,10	1,2039
411,92	385,98	1,1967	412,04	345,95	1,2293
441,26	405,33	1,2207	441,00	303,02	1,2049
470,61	423,70	1,2455	500.08	394.34	1 3089
499,99	440,94	1,2715	529.44	408.84	1,3366
529,34	457,43	1,2976	558.81	422,69	1.3645
505,71	473,21	1,3239	588,18	435,79	1,3930
00,000	I 40/./0	1.0020	••		

The temperature was measured by a platinum resistance thermometer connected in the circuit of a unarybinary R-329 bridge with a mirror M17/4 galvanometer as zero device. The accuracy of the thermostatting was no worse than $\pm 0.05^{\circ}$.

Observation of the mercury position in the mercury adjuster, which yields the initial gas pressure in the piezometer, was also performed by using the radioactive indicator with the radiometer. Since the activity of the gamma-radiation source was sufficiently low (we used Se-75), operation with it is perfectly safe.

Since the mercury search system permits finding the volume at any site of the manometer, it is sufficient to determine that volume from which the gas emerged at a given pressure. By knowing the mass of ejected gas and the volume at a given pressure, the density and the whole mass of gas in the piezometer can be computed.

Operation of the apparatus was verified by determining the density and compressibility of pure gases which have been investigated well. Values of the nitrogen and argon densities measured on our apparatus are compared in Table 1 with data in the literature.

Measured values of the helium compressibility deviate from the data in [6] by 0.2-0.3%. This indicates the reliability of operation of the apparatus and of the results obtained on it with a mean error no greater than 0.3%.

The density and compressibility of argon mixtures with nitrogen were measured on the apparatus described for different concentrations and three values of the temperature (293.15, 323.15, 353.15°K). The gas concentration in the tanks was determined on a Modernized UKh-1 chromatograph [7, 8] with $\pm 0.2\%$ error. The values obtained for the mixture density $Z_{\rm M}$ and compressibility are presented in Table 2.

Values of the empirical constant Z_{12} of (3) were found from the tabular data. It turns out (as should have been expected) that Z_{12} is independent of the composition but depends linearly on the pressure. The following equation for the dependence of Z_{12} on P was obtained by the method of least squares

$$Z_{12} = 0.8326 + 0.864 \cdot 10^{-3} P. \tag{4}$$

A weak dependence of Z_{12} on the temperature was detected for the temperatures studied. To set up this dependence, measurements must be performed in a broader temperature range.

The mean deviation of the measured mixture compressibilities from those calculated by means of (3) with the dependence of Z_{12} on P taken into account by means of (4) is 0.5%.

NOTATION

- x is the molar fraction;
- P is the pressure, bar;
- V is the volume, m^3 ;
- T is the absolute temperature, °K;
- Z is the compressibility coefficient;
- δ is the relative error, %;
- ρ is the density, kg/m³.

Subscripts

- 1, 2 are the numbers of the mixture components;
- M signifies mixture.

LITERATURE CITED

- 1. J. Hirschfelder, C. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids, Wiley (1964).
- 2. I. R. Krichevskii and Ya. S. Kazarnovskii, Zh. Fiz. Khim., 13, 378 (1939).
- 3. A. G. Tabachnikov, in: Thermophysical Properties of Gases [in Russian], Moscow (1970), p. 87.
- 4. I. S. Brovanov and N. D. Kosov, in: Applied and Theoretical Physics [in Russian], No. 5, 138, Alma-Ata (1973).
- 5. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases: In Normal and Dissociated States, Halsted Press (1975).
- 6. N. V. Tsederberg, V. P. Popov, and N. A. Morozova, Thermophysical Properties of Helium [in Russian], Gosénergoizdat, Moscow-Leningrad (1961).
- 7. Yu. I. Zhavrin and Z. I. Novosad, in: Fizika, MV i SSO KazSSR, No.4, 47, Alma-Ata (1969).
- 8. Yu. I. Zhavrin, N. D. Kosov, and Z. I. Novosad, in: Applied and Theoretical Physics [in Russian], No.5, 149, Alma-Ata (1973).